Gujarati
Hindi
6.System of Particles and Rotational Motion
hard

A body is rolling down an inclined plane. If kinetic energy of rotation is $40\%$ of  translational kinetic energy, then the body is a

A

Ring

B

Cylinder

C

Hollow ball

D

Solid ball

Solution

Rotational kinetic energy is

$\mathrm{K}_{\mathrm{R}}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \mathrm{Mk}^{2}\left(\frac{\mathrm{v}}{\mathrm{R}}\right)^{2}\left(\because \mathrm{I}=\mathrm{Mk}^{2} \text { and } \mathrm{v}=\mathrm{R} \omega\right)$

$=\frac{1}{2} \mathrm{Mv}^{2}\left(\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)$

Translational kinetic energy is

$\mathrm{K}_{\mathrm{T}}=\frac{1}{2} \mathrm{Mv}^{2}$

As per questions, $\mathrm{K}_{\mathrm{R}}=40 \% \mathrm{K}_{\mathrm{T}}$

$\therefore \frac{1}{2} \mathrm{Mv}^{2}\left(\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)=40 \% \frac{1}{2} \mathrm{Mv}^{2}$ or $\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}=\frac{40}{100}=\frac{2}{5}$

For solid sphere, $\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}=\frac{2}{5}$

Hence, the body is solid ball.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.