6.System of Particles and Rotational Motion
hard

Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities $\omega_1$ and $\omega_2$ They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is 

A

$I{\left( {{\omega _1} - {\omega _2}} \right)^2}$

B

$\frac{I}{8}{\left( {{\omega _1} - {\omega _2}} \right)^2}$

C

$\;\frac{I}{2}{\left( {{\omega _1} + {\omega _2}} \right)^2}$

D

$\;\frac{I}{4}{\left( {{\omega _1} - {\omega _2}} \right)^2}$

(NEET-2017)

Solution

Initial angular momentum = $I{\omega _1} + I{\omega _2} $

Let $\omega $ be angular speed of the combined system.

Final angular momentum $=2I$$\omega $

$\therefore $   According to conservation of angular momentum 

$I{\omega _1} + I{\omega _2} = 2I\omega \,\,or\,\,\omega  = \frac{{{\omega _1} + {\omega _2}}}{2}$

Initial rotational kinetic energy 

$E = \frac{1}{2}I\left( {\omega _1^2 + \omega _2^2} \right)$

Final rotational kinetic energy 

$\begin{array}{l}
{E_f} = \frac{1}{2}\left( {2I} \right){\omega ^2} = \frac{1}{2}\left( {2I} \right){\left( {\frac{{{\omega _1} + {\omega _2}}}{2}} \right)^2}\\
\,\,\,\,\,\,\,\, = \frac{1}{4}I{\left( {{\omega _1} + {\omega _2}} \right)^2}\\
\therefore \,Loss\,of\,energy\,\Delta E = {E_i} – {E_f}\\
\,\,\,\,\,\, = \,\frac{1}{2}\left( {\omega _1^2 + \omega _2^2} \right) – \frac{I}{4}\left( {\omega _1^2 + \omega _2^2 + 2{\omega _1}{\omega _2}} \right)\\
\,\,\,\,\,\, = \frac{I}{4}\left[ {\omega _1^2 + \omega _2^2 – 2{\omega _1}{\omega _2}} \right] = \frac{I}{4}{\left( {{\omega _1} – {\omega _2}} \right)^2}
\end{array}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.