A body of mass $1 \,kg$ is projected from ground at an angle $30^{\circ}$ with horizontal on a level ground at a speed $50 \,m / s$. The magnitude of change in momentum of the body during its flight is ....... $kg ms ^{-1}$ $\left(g=10 \,m / s ^2\right)$
$50$
$100$
$25$
$0$
A particle is moving on a circular path of radius $r$ with uniform velocity $v$. The change in velocity when the particle moves from $P$ to $Q$ is $(\angle POQ = {40^o})$
If the instantaneous velocity of a particle projected as shown in figure is given by $v =a \hat{ i }+(b-c t) \hat{ j }$, where $a, b$, and $c$ are positive constants, the range on the horizontal plane will be
A particle has initial velocity $(3\hat i + 4\hat j$$ ) $ and has acceleration $(0.4\,\hat i + 0.3\,\hat j)$ . Its speed after $10\,s$ is
A projectile is projected with speed $u$ of an angle of $60^o$ with horizontal from the foot of an inclined plane. If the projectile hits the inclined plane horizontally, the range on inclined plane will be :-