A bomb of $12\, kg$ explodes into two pieces of masses $4\, kg$ and $8\, kg$. The velocity of $8\, kg$ mass is $6\, m/sec$. The kinetic energy of the other mass is .............. $\mathrm{J}$
$48$
$32$
$24$
$288$
A man is standing at the centre of frictionless pond of ice. How can he get himself to the shore
A cart loaded with sand moving with velocity $v$. Sand is falling through the hole as shown in diagram then after falling on the ground sand is
The balls, having linear momenta $\vec{p}_1=\hat{p} \hat{i}$ and $\vec{p}_2=-p \hat{i}$, undergo a collision in free space. There is no external force acting on the balls. Let $\vec{p}_1^{\prime}$ and $\vec{p}_2^{\prime}$ be their final momenta. The following option$(s)$ is (are) $NOT ALLOWED$ for any non-zero value of $\mathrm{p}, \mathrm{a}_1, \mathrm{a}_2, \mathrm{~b}_1, \mathrm{~b}_2, \mathrm{c}_1$ and $\mathrm{c}_2$.
$(A)$ $ \overrightarrow{\mathrm{p}}_1^{\prime}=\mathrm{a}_1 \hat{\mathrm{i}}+\mathrm{b}_1 \hat{\mathrm{j}}+\mathrm{c}_1 \hat{\mathrm{k}} $
$ \overrightarrow{\mathrm{p}}_2^{\prime}=\mathrm{a}_2 \hat{\mathrm{i}}+\mathrm{b}_2 \hat{\mathrm{j}}$
$(B)$ $ \overrightarrow{\mathrm{p}}_1^{\prime}=\mathrm{c}_1 \hat{\mathrm{k}} $
$ \overrightarrow{\mathrm{p}}_2^{\prime}=\mathrm{c}_2 \hat{\mathrm{k}}$
$(C)$ $ \overrightarrow{\mathrm{p}}_1^{\prime}=\mathrm{a}_1 \hat{\mathrm{i}}+\mathrm{b}_1 \hat{\mathrm{j}}+\mathrm{c}_1 \hat{\mathrm{k}} $
$ \overrightarrow{\mathrm{p}}_2=\mathrm{a}_2 \hat{\mathrm{i}}+\mathrm{b}_2 \hat{\mathrm{j}}-\mathrm{c}_1 \hat{\mathrm{k}}$
$(D)$ $ \vec{p}_1^{\prime}=a_1 \hat{i}+b_1 \hat{j} $
$ \overrightarrow{\mathrm{p}}_2^{\prime}=a_2 \hat{\mathrm{i}}+b_1 \hat{\mathrm{j}}$
An open water tight railway wagon of mass $5 \times 10^3 kg$ coasts at an initial velocity $1.2 m/s$ without friction on a railway track. Rain drops fall vertically downwards into the wagon. The velocity of the wagon after it has collected $10^3 kg$ of water will be .............. $\mathrm{m}/ \mathrm{s}$
Two skaters $A$ and $B$ of weights in the ratio $5 : 7$ start facing each other $6\,metres$ apart on a horizontal smooth surface. They pull on a rope stretched between them. How far has each moved when they meet?