Gujarati
Hindi
2.Motion in Straight Line
normal

A bullet fired into a fixed target loses half of its velocity after penetrating $3\, cm$. How much further it will penetrate before coming to rest assuming that it faces constant resistance to motion ?.......$cm$

A

$1.5$

B

$1$

C

$3$

D

$2$

Solution

Let initial velocity of the bullet $=u$

After penetrating $3 \mathrm{cm}$ its velocity becomes $\frac{\mathrm{u}}{2}$

From $v^{2}=u^{2}-2 a s$

$\left(\frac{\mathrm{u}}{2}\right)^{2}=\mathrm{u}^{2}-2 \mathrm{a}(3) \Rightarrow 6 \mathrm{a}=\frac{3 \mathrm{u}^{2}}{4} \Rightarrow \mathrm{a}=\frac{\mathrm{u}^{2}}{8}$

Let further it will penetrate through distance

$x$ and stops at point $C .$

For distance $B C, \mathrm{v}=0, \mathrm{u}=\mathrm{u} / 2, \mathrm{s}=\mathrm{x}, \mathrm{a}=\mathrm{u}^{2} / 8$

From

$v^{2}=u^{2}-2 a s \Rightarrow 0=\left(\frac{u}{2}\right)^{2}-2\left(\frac{u^{2}}{8}\right) \cdot x$

$\Rightarrow x=1 \mathrm{cm}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.