Gujarati
Hindi
5.Work, Energy, Power and Collision
hard

A bullet of mass $m$ strikes a block of mass $M$ connected to a light spring of stiffness $k,$ with a speed $v_0.$ If the bullet gets embedded in the block then, the maximum compression in the spring is

A

${\left( {\frac{{{m^2}v_0^2}}{{(M + m)k}}} \right)^{1/2}}$

B

${\left( {\frac{{Mmv_0^2}}{{2(M + m)k}}} \right)^{1/2}}$

C

${\left( {\frac{{mv_0^2}}{{2(M + m)k}}} \right)^{1/2}}$

D

${\left( {\frac{{Mv^2}}{{(M + m)k}}} \right)^{1/2}}$

Solution

By $COLM$

$\mathrm{mv}_{0}+0=(\mathrm{m}+\mathrm{M}) \mathrm{V}$

$\mathrm{V}=\frac{\mathrm{m}}{\mathrm{m}+\mathrm{M}} \mathrm{V}_{0}$       $…(1)$

By $CONE$

$\frac{1}{2}(\mathrm{m}+\mathrm{M}) \mathrm{V}^{2}=\frac{1}{2} \mathrm{kx}^{2}$       $…(2)$

by solving $(1)$ and $(2)$

$\mathrm{x}=\sqrt{\frac{\mathrm{m}^{2} \mathrm{v}_{0}^{2}}{(\mathrm{m}+\mathrm{M}) \mathrm{k}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.