Gujarati
Hindi
5.Work, Energy, Power and Collision
hard

A ring of mass $m$ is attached to a horizontal spring of spring constant $k$ and natural length $l_0$ . Other end of spring is fixed and ring can slide on a smooth horizontal rod as shown. Now the ring is shifted to position $B$ and released, speed of ring when spring attains it's natural length is

A

$\frac{{2{l_0}}}{3}\sqrt {\frac{k}{m}} $

B

$\frac{{{l_0}}}{3}\sqrt {\frac{k}{m}} $

C

$\frac{{3{l_0}}}{2}\sqrt {\frac{k}{m}} $

D

${l_0}\sqrt {\frac{k}{m}} $

Solution

$\cos 53^{\circ}=\frac{\ell_{0}}{\ell_{0}+\mathrm{x}}$

$\frac{3}{5}=\frac{\ell_{0}}{\ell_{0}+\mathrm{X}}$

$\mathrm{x}=\frac{2}{3} \ell_{0}$

from $\mathrm{B} \rightarrow \mathrm{A}$

$\frac{1}{2} \mathrm{kx}^{2}=\frac{1}{2} \mathrm{mv}^{2}$

$v=x \sqrt{\frac{k}{m}}=\frac{2}{3} \ell_{0} \sqrt{\frac{k}{m}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.