A bullet of mass $10 \,g$ moving with a speed of $20 \,m / s$ hits an ice block of mass $990 \,g$ kept on a frictionless floor and gets stuck in it. How much ice will melt if $50 \%$ of the lost KE goes to ice is .......... $g$ (initial temperature of the ice block and bullet $=0^{\circ} C$ )

  • A

    $0.001$

  • B

    $0.002$

  • C

    $0.003$

  • D

    $0.004$

Similar Questions

Three liquids with masses ${m_1},\,{m_2},\,{m_3}$ are thoroughly mixed. If their specific heats are ${c_1},\,{c_2},\,{c_3}$ and their temperatures ${T_1},\,{T_2},\,{T_3}$ respectively, then the temperature of the mixture is

In an industrial process $10\, kg$ of water per hour is to be heated from $20°C$ to $80°C$. To do this steam at $150°C$ is passed from a boiler into a copper coil immersed in water. The steam condenses in the coil and is returned to the boiler as water at $90°C.$ how many $kg$ of steam is required per hour. $($Specific heat of steam $= 1$ $calorie \,per\, gm°C,$ Latent heat of vaporisation $= 540 \,cal/gm)$

When $0.93\,watt-hour$ of energy is supplied to a block of ice weighing $10\,g,$ it is found that

Steam at $100^o C$ is added slowly to $1400 \,\,gm$ of water at $16^o C$ until the temperature of water is raised to $80^o C$. The mass of steam required to do this is ($L_V =$  $540\,\,cal/gm$) ........... $gm$

An experiment takes $10\, minutes$ to raise the temperature of water in a container from $0\,^oC$ to $100\,^oC$ and another $55\, minutes$ to convert it totally into steam by a heater supplying heat at a uniform rate . Neglecting the specific heat of the container and taking specific heat of water to be $1\, cal / g\,^oC$, the heat of vapourization according to this experiment will come out to be ........ $cal/g$

  • [JEE MAIN 2015]