A capacitor $4\,\mu F$ charged to $50\, V$ is connected to another capacitor of $2\,\mu F$ charged to $100 \,V$ with plates of like charges connected together. The total energy before and after connection in multiples of $({10^{ - 2}}\,J)$ is
$1.5$ and $1.33$
$1.33$ and $1.5$
$3.0$ and $2.67$
$2.67$ and $3.0$
Two capacitors of capacitances $C$ and $2\, C$ are charged to potential differences $V$ and $2\, V$, respectively. These are then connected in parallel in such a manner that the positive terminal of one is connected to the negative terminal of the other. The final energy of this configuration is$.....CV^2$
A $4\, \,\mu F$ condenser is charged to $400\, V$ and then its plates are joined through a resistance. The heat produced in the resistance is.......$J$
The plates of a parallel plate capacitor have an area of $90 \,cm ^{2}$ each and are separated by $2.5\; mm .$ The capacitor is charged by connecting it to a $400\; V$ supply.
$(a)$ How much electrostatic energy is stored by the capacitor?
$(b)$ View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume $u$. Hence arrive at a relation between $u$ and the magnitude of electric field $E$ between the plates.
A condenser having a capacity $2.0$ micro farad is charged to $200\;volts$ and then the plates of the capacitor are connected to a resistance wire. The heat produced in joules will be
A battery is used to charge a parallel plate capacitor till the potential difference between the plates becomes equal to the electromotive force of the battery. The ratio of the energy stored in the capacitor and the work done by the battery will be