A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system
increases by a factor of $2 $
decreases by a factor of $2$
remains the same
increases by a factor of $4 $
A parallel plate capacitor whose capacitance $C$ is $14\, pF$ is charged by a battery to a potential difference $V =12\, V$ between its plates. The charging battery is now disconnected and a porcelin plate with $k =7$ is inserted between the plates, then the plate would oscillate back and forth between the plates with a constant mechanical energy of $..........pJ$. (Assume no friction)
If $E$ is the electric field intensity of an electrostatic field, then the electrostatic energy density is proportional to
Two condensers, one of capacity $C$ and other of capacity $C/2$ are connected to a $V-$ volt battery, as shown in the figure. The work done in charging fully both the condensers is
A series combination of $n_1$ capacitors, each of value $C_1$ is charged by a source of potential difference $4\, V.$ When another parallel combination of $n_2$ capacitors, each of value $C_2,$ is charged by a source of potential difference $V$, it has the same (total) energy stored in it, as the first combination has. The value of $C_2,$ in terms of $C_1$ is then
The energy stored in the electric field produced by a metal sphere is $4.5\, J$. lf the sphere contains $4\,\mu C$ charge, its radius will be.......$mm$ : [Take : $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}\,N - {m^2}\,/{C^2}\, ]$