Gujarati
Hindi
2. Electric Potential and Capacitance
medium

A capacitor of capacity $C_1$ is charged to the potential of $V_0$. After disconnecting with the battery, it is connected with a neutral capacitor of capacity $C_2$ as shown in the adjoining figure. The ratio of energy of system before and after the connection of switch $S$ will be

A

$\frac{{{C_1} + {C_2}}}{{{C_1}}}$

B

$\frac{{{C_1}}}{{{C_1} + {C_2}}}$

C

$C_1C_2$

D

$\frac{{{C_1}}}{{{C_2}}}$

Solution

$U_{1}=\frac{1}{2} C_{1} V_{0}^{2}$

$C_{1} V_{0}=\left(C_{1}+C_{2}\right) V$

$V=\frac{C_{1} V_{0}}{C_{1}+C_{2}}$

$\mathrm{U}_{2}=\frac{1}{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \frac{\mathrm{C}_{1}^{2} \mathrm{V}_{0}^{2}}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)^{2}}=\frac{1}{2} \frac{\mathrm{C}_{1}^{2} \mathrm{V}_{0}^{2}}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}$

$\frac{U_{1}}{U_{2}}=\frac{1 / 2 C_{1} V_{0}^{2}}{1 / 2 \frac{C_{1}^{2} V_{0}^{2}}{\left(C_{1}+C_{2}\right)}}$

$\frac{U_{1}}{U_{2}}=\frac{C_{1}+C_{2}}{C_{1}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.