A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is .... $Hz$
$700$
$717$
$1000$
$679$
In a resonance tube experiment, the first resonance is obtained for $10\, cm$ of air column and the second for $32\, cm$. The end correction for this apparatus is ....$cm$
A transverse wave is passing through a stretched string with a speed of $20\ m/s$ . The tension in the string is $20\ N$ . At a certain point $P$ on the string, it is observed that energy is being transferred at a rate of $40\ mW$ at a given instant. Find the speed of point $P$
The equation of displacement of two waves are given as ${y_1} = 10\,\sin \,\left( {3\pi t\, + \,\pi /3\,} \right)$ , ${y_2} = 5\,\left( {\sin \,3\pi t + \,\sqrt 3 \,\cos \,3\pi t} \right)$ , then what is the ratio of their amplitude
Two cars $A$ and $B$ are moving in the same direction with speeds $36\, km/hr$ and $54 \,km/hr$ respectively. Car $B$ is ahead of $A$. If $A$ sounds horn of frequency $1000\, Hz$ and the speed of sound in air is $340\, m/s$, the frequency of sound received by the driver of car $B$ is ..... $Hz$
Figure shows a sinusoidal wave at a given instant Which points are in same phase ?