A whistle ' $S$ ' of frequency $f$ revolves in a circle of radius $R$ at a constant speed $v$. What is the ratio of maximum and minimum frequency detected by a detector $D$ at rest at a distance $2 R$ from the center of circle as shown in figure? (take ' $c$ ' as speed of sound)

213494-q

  • A

    $\left(\frac{c+v}{c-v}\right)$

  • B

    $\sqrt{2}\left(\frac{c+v}{c-v}\right)$

  • C

    $\sqrt{2}$

  • D

    $\frac{(c+v)}{c \sqrt{2}}$

Similar Questions

The pattern of standing waves formed on a stretched string at two instants of time (extreme, mean) are shown in figure. The velocity of two waves superimposing to form stationary waves is $360\, ms^{-1}$ and their frequencies are $256\, Hz$. Which is not possible value of $t$ (in $\sec$) :-

A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda _2$ . The ratio $\lambda _2/\lambda _1$ is

A train approaching a railway plateform with a speed of  $20\,\,m\,s^{-1}$ starts blowing the whistle speed of sound in air is $340\,\,ms^{-1}.$ If frequency of the emitted sound from the whistle is  $640\,\,Hz,$  the frequency of sound as heard by person standing on the platform is .... $Hz$

When a tuning fork is vibrating, the vibrations of the two prongs

A source of sound is travelling with a velocity of $40\,km/hour$ towards an observer and emits sound of frequency $2000\,Hz$ . If the velocity of sound is $1220\,km/hour$ , what is the apparent frequency heard by the observer ..... $Hz$