Gujarati
Hindi
8.Electromagnetic waves
medium

A carbon dioxide laser emits sinusoidal electro-magnetic wave that travels in vacuum in the negative $x-$ direction. The wavelength is $10.6\,\mu $ and $\vec E$ fields is parallel to $z-$ axis, with $E_{max} = 1.5 \times 10^6\, M\, v/m$. Then vector equations for $\vec E$  and $\vec B$ as a function of time and position are

A

$\vec E = \hat k\, [1.5×10^6cos(8.93×10^5x+3.78×10^{14}t)]\,v/m$

$\vec B=\hat j\, [5.0×10^{-3}cos(8.93×10^5x+3.78×10^{14}t)]\,T$

B

$\vec E = \hat k\, [1.5×10^6cos(8.93×10^5x+3.78×10^{14}t)]\,v/m$

$\vec B=-\hat j\, [5.0×10^{-3}cos(8.93×10^5x+3.78×10^{14}t)]\,T$

C

$\vec E = \hat k\, [1.5×10^6cos(5.93×10^5x+1.78×10^{14}t)]\,v/m$

$\vec B=-\hat j\, [5.0×10^{-3}cos(5.93×10^5x+1.78×10^{14}t)]\,T$

D

$\vec E = \hat k\, [1.5×10^6cos(5.93×10^5x+1.78×10^{14}t)]\,v/m$

$\vec B=\hat j\, [5.0×10^{-3}cos(5.93×10^5x+1.78×10^{14}t)]$

Solution

$\mathrm{B}_{\max }=\frac{\mathrm{E}_{\max }}{\mathrm{C}} \Rightarrow \mathrm{B}_{\max }=\frac{1.5 \times 10^{6}}{3.0 \times 10^{8}}=5.0 \times 10^{-3} \mathrm{\,T}$

$\mathrm{K}=\frac{2 \pi}{\lambda} \Rightarrow \mathrm{K}=\frac{2 \pi}{10.6 \times 10^{-6}} \Rightarrow \mathrm{K}=5.93 \times 10^{5} \mathrm{\,rad} / \mathrm{m}$

$\omega=\mathrm{cK} \Rightarrow \omega=3 \times 10^{8}\left(5.93 \times 10^{5}\right)$

$=1.78 \times 10^{14} \mathrm{\,rad} / \mathrm{sec}$

Direction of propagation $=\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$

$\Rightarrow-\hat{\mathrm{i}}=\overrightarrow{\mathrm{E}} \times \hat{\mathrm{A}} \Rightarrow \overrightarrow{\mathrm{A}}=\hat{\mathrm{j}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.