A carbon dioxide laser emits sinusoidal electro-magnetic wave that travels in vacuum in the negative $x-$ direction. The wavelength is $10.6\,\mu $ and $\vec E$ fields is parallel to $z-$ axis, with $E_{max} = 1.5 \times 10^6\, M\, v/m$. Then vector equations for $\vec E$ and $\vec B$ as a function of time and position are
$\vec E = \hat k\, [1.5×10^6cos(8.93×10^5x+3.78×10^{14}t)]\,v/m$
$\vec B=\hat j\, [5.0×10^{-3}cos(8.93×10^5x+3.78×10^{14}t)]\,T$
$\vec E = \hat k\, [1.5×10^6cos(8.93×10^5x+3.78×10^{14}t)]\,v/m$
$\vec B=-\hat j\, [5.0×10^{-3}cos(8.93×10^5x+3.78×10^{14}t)]\,T$
$\vec E = \hat k\, [1.5×10^6cos(5.93×10^5x+1.78×10^{14}t)]\,v/m$
$\vec B=-\hat j\, [5.0×10^{-3}cos(5.93×10^5x+1.78×10^{14}t)]\,T$
$\vec E = \hat k\, [1.5×10^6cos(5.93×10^5x+1.78×10^{14}t)]\,v/m$
$\vec B=\hat j\, [5.0×10^{-3}cos(5.93×10^5x+1.78×10^{14}t)]$
The speed of electromagnetic wave in a medium (whose dielectric constant is $2.25$ and relative permeability is $4$ ) is equal to .......... $\times 10^8 \,m / s$
The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is $B_0 = 510 \;nT$.What is the amplitude of the electric field (in $N/C$) part of the wave?
The electromagnetic waves travel with a velocity
The magnetic field of a plane electromagnetic wave is given by
$\overrightarrow{ B }=2 \times 10^{-8} \sin \left(0.5 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ j } T$ The amplitude of the electric field would be.
The electric field in an electromagnetic wave is given by $E =56.5 \sin \omega( t - x / c ) \;NC ^{-1}$. Find the intensity of the wave if it is propagating along $x-$axis in the free space. (Given $\left.\varepsilon_{0}=8.85 \times 10^{-12} \;C ^{2} N ^{-1} m ^{-2}\right)$