A certain charge $Q$ is divided into two parts $q$ and $(Q-q) .$ How should the charges $Q$ and $q$ be divided so that $q$ and $(Q-q)$ placed at a certain distance apart experience maximum electrostatic repulsion?
${Q}=\frac{{q}}{2}$
${Q}=3 {q}$
$Q=2 q$
$Q=4 q$
Consider a system of three charges $\frac{q}{3},\frac{q}{3}$ and $\frac{-2q}{3}$ placed at points $A,B$ and $C$, respectively, as shown in the figure. Take $O$ to be the centre of the circle of radius $R$ and angle $CAB = 60^o$
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
There are two charges $+1$ microcoulombs and $+5$ microcoulombs. The ratio of the forces acting on them will be
What is the force (in $N$) between two small charged spheres having charges of $2 \times 10^{-7} \;C$ and $3 \times 10^{-7} \;C$ placed $30\; cm$ apart in air?
Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z$ axis. If a $-ve$ point charge is placed at a distance $z$ away from the above frame $(z<< L)$ then