A charge $q$ is placed in the middle of a line joining the two equal and like point charge $Q$. This charge $q$ will remain in equilibrium for which value of $q$ is
$\frac{-Q}{4}$
$\frac{Q}{4}$
$\frac{-Q}{\sqrt 3}$
All
Three identical charged balls each of charge $2 \,C$ are suspended from a common point $P$ by silk threads of $2 \,m$ each (as shown in figure). They form an equilateral triangle of side $1 \,m$.
The ratio of net force on a charged ball to the force between any two charged balls will be ...........
A charge $Q$ is placed at each of the opposite corners of a square. A charge $q$ is placed at each of the other two corners. If the net electrical force on $Q$ is zero, then $\frac{Q}{q}=$ ______
As shown in the figure. a configuration of two equal point charges $\left( q _0=+2 \mu C \right)$ is placed on an inclined plane. Mass of each point charge is $20\,g$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $h = x \times 10^{-3}\,m$ The value of $x$ is $..........$.(Take $\left.\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,Nm ^2 C ^{-2}, g=10\,ms ^{-1}\right)$
Write some important points for vector form of Coulomb’s law.
A negatively charged particle $p$ is placed, initially at rest, in $a$ constant, uniform gravitational field and $a$ constant, uniform electric field as shown in the diagram. What qualitatively, is the shape of the trajectory of the electron?