Two point charges $A$ and $B$, having charges $+Q$ and $- Q$ respectively, are placed at certain distance apart and force acting between them is $\mathrm{F}$. If $25 \%$ charge of $A$ is transferred to $B$, then force between the charges becomes
$F$
$\frac{9 \mathrm{F}}{16}$
$\frac{16 \mathrm{F}}{9}$
$\frac{4 \mathrm{F}}{3}$
Electric charges of $1\,\mu C,\, - 1\,\mu C$ and $2\,\mu C$ are placed in air at the corners $A$, $B$ and $C$ respectively of an equilateral triangle $ABC$ having length of each side $10 \,cm$. The resultant force on the charge at $C$ is......$N$
An infinite number of charges, each of charge $1 \,\mu C$ are placed on the $x$-axis with co-ordinates $x = 1, 2,4, 8, ....\infty$. If a charge of $1\, C$ is kept at the origin, then what is the net force acting on $1\, C$ charge....$N$
A simple pendulum of period $T$ has a metal bob which is negatively charged. If it is allowed to oscillate above a positively charged metal plate, its period will
A charge ${q_1}$ exerts some force on a second charge ${q_2}$. If third charge ${q_3}$ is brought near, the force of ${q_1}$ exerted on ${q_2}$
Two electrons are separated by a distance of $1\,\mathop A\limits^o $. What is the coulomb force between them