A charge $2\,\mu C$ is taken from infinity to a point in an electric field, without changing its velocity. If work done against forces is $20\,\mu J$ then potential at that point will be.....$V$

  • A

    $-20$

  • B

    $10$

  • C

    $-10$

  • D

    $30$

Similar Questions

Two capacitor one of capacitance $C$ and other capacitance $C/2$ are connected with a battery of $V$ $volt$ then heat produced in connecting wire

Electric flux through surface $s_1$

Electric field at a point varies as $r^o$ for

In steady state heat conduction, the equations that determine the heat current $j ( r )$ [heat flowing per unit time per unit area] and temperature $T( r )$ in space are exactly the same as those governing the electric field $E ( r )$ and electrostatic potential $V( r )$ with the equivalence given in the table below.

Heat flow Electrostatics
$T( r )$ $V( r )$
$j ( r )$ $E ( r )$

We exploit this equivalence to predict the rate $Q$ of total heat flowing by conduction from the surfaces of spheres of varying radii, all maintained at the same temperature. If $\dot{Q} \propto R^{n}$, where $R$ is the radius, then the value of $n$ is

  • [KVPY 2018]

Electric field at a place is $\overrightarrow E  = {E_0}\widehat i\,\,V/m$. A particle of charge $+q_0$ moves from point $A$  to $B$ along a circular path find work done in this motion by electric field :-