The electric flux from a cube of edge $l$ is $\phi $. If an edge of the cube is made $2l$ and the charge enclosed is halved, its value will be
$4\phi $
$2\phi $
$\frac{\phi }{2}$
$\phi $
Consider a solid insulating sphere of radius $R$ with charge density varying as $\rho = \rho _0r^2$ ($\rho _0$ is a constant and $r$ is measure from centre). Consider two points $A$ and $B$ at distance $x$ and $y$ respectively $(x < R, y > R)$ from the centre. If magnitudes of electric fields at points $A$ and $B$ are equal, then
A parallel plate capacitor with air between the plates has a capacitance of $9\, pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac{2d}{3}$. Capacitance of the capacitor is now....$pF$
A particle of mass $m$ and charge $q$ is placed at rest in a uniform electric field $E$ and then released. The $KE$ attained by the particle after moving a distance $y$ is
A charge $Q$ is divided into two parts of $q$ and $Q - q$. If the coulomb repulsion between them when they are separated is to be maximum, the ratio of $\frac{Q}{q}$ should be
The plates of a parallel plate capacitor are charged up to $100\, volt$. A $2\, mm$ thick plate is inserted between the plates, then to maintain the same potential difference, the distance between the capacitor plates is increased by $1.6\, mm$. The dielectric constant of the plate is