A charge $Q$ is divided into two parts of $q$ and $Q - q$. If the coulomb repulsion between them when they are separated is to be maximum, the ratio of $\frac{Q}{q}$ should be

  • A

    $2$

  • B

    $0.5$

  • C

    $4$

  • D

    $0.25$

Similar Questions

Two masses $M_1$ and $M_2$ carry positive charges $Q_1$ and $Q_2$, respectively. They are dropped to the floor in a laboratory set up from the same height, where there is a constant electric field vertically upwards. $M_1$ hits the floor before $M_2$. Then,

  • [KVPY 2019]

In a certain region of space, there exists a uniform electric field of value $2\times10^2\hat k\, Vm^{-1}$. A rectangular coil of dimension $10\, cm\times20\, cm$ is placed in the $xy$ plane. The electric flux through the coil is......$Vm$

The equivalent capacitance of the combinatio shown in Figure is

Consider a cube of uniform charge density $\rho$. The ratio of electrostatic potential at the centre of the cube to that at one of the corners of the cube is

  • [KVPY 2016]

In steady state heat conduction, the equations that determine the heat current $j ( r )$ [heat flowing per unit time per unit area] and temperature $T( r )$ in space are exactly the same as those governing the electric field $E ( r )$ and electrostatic potential $V( r )$ with the equivalence given in the table below.

Heat flow Electrostatics
$T( r )$ $V( r )$
$j ( r )$ $E ( r )$

We exploit this equivalence to predict the rate $Q$ of total heat flowing by conduction from the surfaces of spheres of varying radii, all maintained at the same temperature. If $\dot{Q} \propto R^{n}$, where $R$ is the radius, then the value of $n$ is

  • [KVPY 2018]