A charge of $1$ coulomb is located at the centre of a sphere of radius $10 \,cm$ and a cube of side $20 \,cm$. The ratio of outgoing flux from the sphere and cube will be
More than one
Less than one
One
Nothing certain can be said
An electric field is uniform, and in the positive $x$ direction for positive $x,$ and uniform with the same magnitude but in the negative $x$ direction for negative $x$. It is given that $E =200 \hat{ i }\; N/C$ for $x\,>\,0$ and $E = - 200\hat i\;N/C$ for $x < 0 .$ A right ctrcular cyllnder of length $20 \;cm$ and radius $5\; cm$ has its centre at the origin and its axis along the $x$ -axis so that one face is at $x=+10\; cm$ and the other is at $x=-10\; cm$
$(a)$ What is the net outward flux through each flat face?
$(b)$ What is the flux through the side of the cylinder?
$(c)$ What is the net outward flux through the cylinder?
$(d)$ What is the net charge inside the cyllnder?
Two charges of $5 Q$ and $-2 Q$ are situated at the points $(3 a, 0)$ and $(-5 a, 0)$ respectively. The electric flux through a sphere of radius $4a$ having center at origin is
A hollow cylinder has a charge $q$ coulomb within it. If $\phi$ is the electric flux in units of $volt-meter$ associated with the curved surface $B,$ the flux linked with the plane surface $A$ in units of $V-m$ will be
A point charge $+10\; \mu \,C$ is a distance $5 cm$ directly above the centre of a square of side $10 \;cm ,$ as shown in Figure. What is the magnitude of the electric flux through the square?
When electric flux is said to be positive, negative or zero ?