An electric field is given by $(6 \hat{i}+5 \hat{j}+3 \hat{k}) \ N / C$.

The electric flux through a surface area $30 \hat{\mathrm{i}}\; m^2$ lying in $YZ-$plane (in SI unit) is

  • [JEE MAIN 2024]
  • A

    $90$

  • B

    $150$

  • C

    $180$

  • D

    $60$

Similar Questions

The inward and outward electric flux for a closed surface in units of $N{\rm{ - }}{m^2}/C$ are respectively $8 \times {10^3}$ and $4 \times {10^3}.$ Then the total charge inside the surface is [where ${\varepsilon _0} = $ permittivity constant]

Draw electric field lines of simple charge distribution.

$(a)$ An electrostatic field line is a continuous curve. That is, a field line cannot have sudden breaks. Why not?

$(b)$ Explain why two field lines never cross each other at any point?

Which of the following figure represents the electric field lines due to a single positive charge?

An arbitrary surface encloses a dipole. What is the electric flux through this surface ?