A charge particle is free to move in an electric field. It will travel

  • [IIT 1979]
  • A

    Always along a line of force

  • B

    Along a line of force, if its initial velocity is zero

  • C

    Along a line of force, if it has some initial velocity in the direction of an acute angle with the line of force

  • D

    None of the above

Similar Questions

The figure shows two situations in which a Gaussian cube sits in an electric field. The arrows and values indicate the directions and magnitudes (in $N-m^2/C$) of the electric fields. What is the net charge (in the two situations) inside the cube?

  • [AIIMS 2011]

An electric field $\overrightarrow{\mathrm{E}}=4 \mathrm{x} \hat{\mathrm{i}}-\left(\mathrm{y}^{2}+1\right) \hat{\mathrm{j}}\; \mathrm{N} / \mathrm{C}$ passes through the box shown in figure. The flux of the electric field through surfaces $A B C D$ and $BCGF$ are marked as $\phi_{I}$ and $\phi_{\mathrm{II}}$ respectively. The difference between $\left(\phi_{\mathrm{I}}-\phi_{\mathrm{II}}\right)$ is (in $\left.\mathrm{Nm}^{2} / \mathrm{C}\right)$

  • [JEE MAIN 2020]

An electric dipole is put in north-south direction in a sphere filled with water. Which statement is correct

The electric field in a region is given $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{ i }+\frac{4}{5} E _{0} \hat{ j }\right) \frac{ N }{ C } .$ The ratio of flux of reported field through the rectangular surface of area $0.2\, m ^{2}$ (parallel to $y - z$ plane) to that of the surface of area $0.3\, m ^{2}$ (parallel to $x - z$ plane $)$ is $a : b ,$ where $a =$ .............

[Here $\hat{ i }, \hat{ j }$ and $\hat{ k }$ are unit vectors along $x , y$ and $z-$axes respectively]

  • [JEE MAIN 2021]

A charge $Q$ is situated at the comer of a cube, the electric flux passed through all the six faces of the cube is

  • [AIPMT 2000]