A charge particle of charge $q$ and mass $m$ is accelerated through a potential diff. $V\, volts$. It enters a region of orthogonal magnetic field $B$. Then radius of its circular path will be

  • A

    $\sqrt {\frac{{Vm}}{{2q{B^2}}}} $

  • B

    ${\frac{{2Vm}}{{q{B^2}}}}$

  • C

    $\sqrt {\frac{{2Vm}}{q}} \left( {\frac{1}{B}} \right)$

  • D

    $\sqrt {\frac{{Vm}}{q}} \left( {\frac{1}{B}} \right)$

Similar Questions

An electron beam passes through a magnetic field of $2 \times 10^{-3}\,Wb/m^2$ and an electric field of $1.0 \times 10^4\,V/m$ both acting simultaneously. The path of electron remains undeviated. The speed of electron if the electric field is removed, and the radius of electron path will be respectively

  • [AIIMS 2011]

An ionized gas contains both positive and negative ions. If it is subjected simultaneously to an electric field along the $+x$ direction and a magnetic field along the $+z$ direction, then

  • [IIT 2000]

An electron is projected normally from the surface of a sphere with speed $v_0$ in a uniform magnetic field perpendicular to the plane of the paper such that its strikes symmetrically opposite on the sphere with respect to the $x-$ axis. Radius of the sphere is $'a'$ and the distance of its centre from the wall is $'b'$ . What should be magnetic field such that the charge particle just escapes the wall

A proton and an $\alpha -$ particle (with their masses in the ratio of $1 : 4$ and charges in the ratio of $1:2$ are accelerated from rest through a potential difference $V$. If a uniform magnetic field $(B)$ is set up perpendicular to their velocities, the ratio of the radii $r_p : r_{\alpha }$ of the circular paths described by them will be

  • [JEE MAIN 2019]

If a charged particle enters perpendicularly in the uniform magnetic field then