A charge produces an electric field of $1\, N/C$ at a point distant $0.1\, m$ from it. The magnitude of charge is
$1.11 \times {10^{ - 12}}\,C$
$9.11 \times {10^{ - 12}}\,C$
$7.11 \times {10^{ - 6}}\,C$
None of these
A point charge of $10\,\mu C$ is placed at the origin. At what location on the $X$-axis should a point charge of $40\,\mu\,C$ be placed so that the net electric field is zero at $x =2\,cm$ on the $X$-axis ?
Two point charges $q_{1}$ and $q_{2},$ of magnitude $+10^{-8} \;C$ and $-10^{-8}\; C ,$ respectively, are placed $0.1 \;m$ apart. Calculate the electric fields at points $A, B$ and $C$ shown in Figure
Five charges, $\mathrm{q}$ each are placed at the corners of a regular pentagon of side $\mathrm{'a'}$ as in figure.
$(a)$ $(i)$ What will be the electric field at $O$, the centre of the pentagon ?
$(ii)$ What will be the electric field at $O$ if the charge from one of the corners (say $A$ $)$ is removed ?
$(iii)$ What will be the electric field at $O $ if the charge $q$ at $A$ is replaced by$ -q$ ?
$(b) $ How would your answer to $(a)$ be affected if pentagon is replaced by $n\,-$ sided regular polygon with charge $q$ at each of its corners ?
Charge $q$ is uniformly distributed over a thin half ring of radius $R$. The electric field at the centre of the ring is
A thin disc of radius $b = 2a$ has a concentric hole of radius $'a'$ in it (see figure). It carries uniform surface charge $'\sigma '$ on it. If the electric field on its axis at height $'h'$ $(h << a)$ from its centre is given as $'Ch'$ then value of $'C'$ is