एक आवेश से $0.1\,m$ की दूरी पर विद्युत क्षेत्र $1\,N/C$ है। आवेश का परिमाण होगा
$1.11 \times {10^{ - 12}}\,C$
$9.11 \times {10^{ - 12}}\,C$
$7.11 \times {10^{ - 6}}\,C$
None of these
एक ऊर्ध्वाधर विद्युत क्षेत्र का परिमाण $4.9 \times 10^5\,N / C$ है। यह द्रव्यमान $0.1\,g$ वाली जल की बूँद को गिरने से रोकता है। बूँद पर आवेश का मान ........ $\times 10^{-9} \;C$ -(दिया गया है $g =9.8\,m / s ^2$ )
एक पेण्डुलम के गोलक का द्रव्यमान $30.7 \times {10^{ - 6}}\,kg$ है। एवं इस पर आवेश $2 \times {10^{ - 8}}\,C$ है। यह पेण्डुलम $20000\, V/m$ के एकसमान विद्युत क्षेत्र में संतुलन में है। पेण्डुलम के धागे में तनाव होगा $(g = 9.8\,m/{s^2})$
आरेक्ष में दर्शाए गए अनुसार बिन्दु $O$ पर विधुत क्षेत्र का परिमाण क्या होगा ? आरेख की प्रत्येक भुजा की लम्बाई $l$ है तथा प्रत्येक भुजा एक-दूसरे के लम्बवत् है।
$ABC$ एक समबाहु त्रिभुज है। प्रत्येक शीर्ष पर $ + \,q$ आवेश रखा गया है। बिन्दु $O$ पर वैद्युत क्षेत्र की तीव्रता होगी
समकोण त्रिभुज $OAB$ के बिन्दु $A$ तथा $B$ पर आवेश $Q _{1}$ तथा $Q _{2}$ रखे हैं (चित्र देखिये)। यदि बिन्दु $O$ पर वैधुत क्षेत्र कर्ण के लम्बवत् है तो आवेशों का अनुपात $Q_{1} / Q_{2}$ किसके समानुपाती होगा ?