A charged particle enters a uniform magnetic field perpendicular to it. The magnetic field

  • A

    Increases the speed of the particle

  • B

    Decreases the kinetic energy of the particle

  • C

    Changes the direction of motion of the particle

  • D

    Both $(a)$ and $(c)$

Similar Questions

$1$ $\mathrm{T}$ $=$ ...... Guass.

 A charged particle (electron or proton) is introduced at the origin $(x=0, y=0, z=0)$ with a given initial velocity $\overrightarrow{\mathrm{v}}$. A uniform electric field $\overrightarrow{\mathrm{E}}$ and magnetic field $\vec{B}$ are given in columns $1,2$ and $3$ , respectively. The quantities $E_0, B_0$ are positive in magnitude.

column $I$

column $II$ column $III$
$(I)$ Electron with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(i)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0^2 \hat{\mathrm{Z}}$ $(P)$ $\overrightarrow{\mathrm{B}}=-\mathrm{B}_0 \hat{\mathrm{x}}$
$(II)$ Electron with $\overrightarrow{\mathrm{v}}=\frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{y}}$ $(ii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{y}}$ $(Q)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{x}}$
$(III)$ Proton with $\overrightarrow{\mathrm{v}}=0$ $(iii)$ $\overrightarrow{\mathrm{E}}=-\mathrm{E}_0 \hat{\mathrm{x}}$ $(R)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{y}}$
$(IV)$ Proton with $\overrightarrow{\mathrm{v}}=2 \frac{\mathrm{E}_0}{\mathrm{~B}_0} \hat{\mathrm{x}}$ $(iv)$ $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \hat{\mathrm{x}}$ $(S)$ $\overrightarrow{\mathrm{B}}=\mathrm{B}_0 \hat{\mathrm{z}}$

($1$) In which case will the particle move in a straight line with constant velocity?

$[A] (II) (iii) (S)$    $[B] (IV) (i) (S)$   $[C] (III) (ii) (R)$   $[D] (III) (iii) (P)$

($2$) In which case will the particle describe a helical path with axis along the positive $z$ direction?

$[A] (II) (ii) (R)$   $[B] (IV) (ii) (R)$  $[C] (IV) (i) (S)$   $[D] (III) (iii)(P)$

($3$)  In which case would be particle move in a straight line along the negative direction of y-axis (i.e., more along $-\hat{y}$ )?

$[A] (IV) (ii) (S)$   $[B] (III) (ii) (P)$   $[C]$ (II) (iii) $(Q)$   $[D] (III) (ii) (R)$

  • [IIT 2017]

This question has Statement $1$ and Statement $2$ . Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement $1$: A charged particle is moving at right angle to a static magnetic field . During the motion the kinetic energy of the charge remains unchanged.

Statement $2$: Static magnetic field exert force on a moving charge in the direction perpendicular to the magnetic field.

  • [AIEEE 2012]

A electron experiences a force $\left( {4.0\,\hat i + 3.0\,\hat j} \right)\times 10^{-13} N$ in a uniform magnetic field when its velocity is $2.5\,\hat k \times \,{10^7} ms^{-1}$. When the velocity is redirected and becomes $\left( {1.5\,\hat i - 2.0\,\hat j} \right) \times {10^7}$, the magnetic force of the electron is zero. The magnetic field $\vec B$ is :

A charged particle carrying charge $1\,\mu C$  is moving with velocity $(2 \hat{ i }+3 \hat{ j }+4 \hat{ k })\, ms ^{-1} .$ If an external magnetic field of $(5 \hat{ i }+3 \hat{ j }-6 \hat{ k }) \times 10^{-3}\, T$ exists in the region where the particle is moving then the force on the particle is $\overline{ F } \times 10^{-9} N$. The vector $\overrightarrow{ F }$ is :

  • [JEE MAIN 2020]