A charged particle is released from rest in a region of steady uniform electric and magnetic fields which are parallel to each other the particle will move in a
Straight line
Circle
Helix
Cycloid
An electron moves along vertical line and away from the observer, then pattern of concentric circular magnetic field lines which are produced due to its motion
The radius of curvature of the path of the charged particle in a uniform magnetic field is directly proportional to
An electron is moving along the positive $x$-axis. If the uniform magnetic field is applied parallel to the negative $z$-axis. then
$A.$ The electron will experience magnetic force along positive $y$-axis
$B.$ The electron will experience magnetic force along negative $y$-axis
$C.$ The electron will not experience any force in magnetic field
$D.$ The electron will continue to move along the positive $x$-axis
$E.$ The electron will move along circular path in magnetic field
Choose the correct answer from the options given below:
A particle of charge $q$, mass $m$ enters in a region of magnetic field $B$ with velocity $V_0 \widehat i$. Find the value of $d$ if the particle emerges from the region of magnetic field at an angle $30^o$ to its ititial velocity:-
One proton beam enters a magnetic field of ${10^{ - 4}}$ $T$ normally, Specific charge = ${10^{11}}\,C/kg.$ velocity = ${10^7}\,m/s$. What is the radius of the circle described by it....$m$