A charged particle is suspended in equilibrium in a uniform vertical electric field of intensity $20000\, V/m$. If mass of the particle is $9.6 \times {10^{ - 16}}\,kg$, the charge on it and excess number of electrons on the particle are respectively $(g = 10\,m/{s^2})$
$4.8 \times {10^{ - 19}}\,C,\,3$
$5.8 \times {10^{ - 19}}\,C,\,4$
$3.8 \times {10^{ - 19}}\,C,\,2$
$2.8 \times {10^{ - 19}}\,C,\,1$
A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to
Suppose a uniformly charged wall provides a uniform electric field of $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ normally. A charged particle of mass $2 \mathrm{~g}$ being suspended through a silk thread of length $20 \mathrm{~cm}$ and remain stayed at a distance of $10 \mathrm{~cm}$ from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{\mathrm{x}}} \ \mu \mathrm{C}$ where $\mathrm{x}=$ ____________. use $g=10 \mathrm{~m} / \mathrm{s}^2$ ]
The insulation property of air breaks down at $E = 3 \times {10^6}$ $volt\,/\,metre$. The maximum charge that can be given to a sphere of diameter $5\,m$ is approximately (in coulombs)
The unit of intensity of electric field is
The electric field due to a charge at a distance of $3\, m$ from it is $500\, N/coulomb$. The magnitude of the charge is.......$\mu C$ $\left[ {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,\frac{{N - {m^2}}}{{coulom{b^2}}}} \right]$