A charged particle with specific charge $S$ moves undeflected through a region of space containing mutually perpendicular uniform electric and magnetic fields $E$ and $B$ . When electric field is switched off, the particle will move in a circular path of radius

  • A

    $\frac {E}{BS}$

  • B

    $\frac {ES}{B}$

  • C

    $\frac {ES}{B^2}$

  • D

    $\frac {E}{B^2S}$

Similar Questions

An electron moves with speed $2 \times {10^5}\,m/s$ along the positive $x$-direction in the presence of a magnetic induction $B = \hat i + 4\hat j - 3\hat k$ (in $Tesla$) The magnitude of the force experienced by the electron in Newton's is (charge on the electron =$1.6 \times {10^{ - 19}}C)$

Two electrons are moving along parallel lines unidirectionarly with same velocity they will

Show that a force that does no work must be a velocity dependent force.

A proton (mass $m$ and charge $+e$) and an $\alpha  -$ particle (mass $4m$ and charge $+2e$) are projected with the same kinetic energy at right angles to the uniform magnetic field. Which one of the following statements will be true

A deuteron and a proton moving with equal kinetic energy enter into to a uniform magnetic field at right angle to the field. If $r_{d}$ and $r_{p}$ are the radii of their circular paths respectively, then the ratio $\frac{r_{d}}{r_{p}}$ will be $\sqrt{ x }: 1$ where $x$ is ..........

  • [JEE MAIN 2022]