A circular wire loop of radius $R$ is placed in the $x$-y plane centered at the origin $O. A$ square loop os side $a ( a << R$ ) having two turns is placed with its center at $a=\sqrt{3} \ R$ along the axis of the circular wire loop, as shown in figure. The plane of the square loop makes an angle of $45^{\circ}$ with respect to the $z$-axis. If the mutual inductance between the loops is given by
$\frac{\mu_0 a^2}{2^{p / 2} R}$, then the value of $p$ is
$6$
$7$
$8$
$9$
Two circuits have coefficient of mutual induction of $0.09$ $henry$. Average $e.m.f$. induced in the secondary by a change of current from $0$ to $20$ $ampere$ in $0.006$ $second$ in the primary will be......$V$
A short solenoid (length $l$ and radius $r$ with $n$ turns per unit length) lies well inside and on the axis of a very long, coaxial solenoid (length $L$, radius $R$ and $N$ turns per unit length, with $R>r$ ). Current $I$ follows in the short solenoid. Choose the correct statement.
If a current of $3.0$ $amperes$ flowing in the primary coil is reduced to zero in $0.001$ $second,$ then the induced $e.m.f$ in the secondary coil is $15000$ $volts$. The mutual inductance between the two coils is....$henry$
Two coils have mutual inductance $0.002 \ \mathrm{H}$. The current changes in the first coil according to the relation $\mathrm{i}=\mathrm{i}_0 \sin \omega \mathrm{t}$, where $\mathrm{i}_0=5 \mathrm{~A}$ and $\omega=50 \pi$ $\mathrm{rad} / \mathrm{s}$. The maximum value of $\mathrm{emf}$ in the second coil is $\frac{\pi}{\alpha} \mathrm{V}$. The value of $\alpha$ is_______.
$(a)$ Obtain an expression for the mutual inductance between a long straight wire and a square loop of side $a$ as shown in Figure.
$(b)$ Now assume that the straight wire carries a current of $50\; A$ and the loop is moved to the right with a constant velocity, $v=10 \;m / s$ Calculate the induced $emf$ in the loop at the instant when $x=0.2\; m$ Take $a=0.1\; m$ and assume that the loop has a large resistance.