The mutual inductance of a pair of coils, each of $N\,turns$, is $M\,henry$. If a current of $I\, ampere$ in one of the coils is brought to zero in $t$ $second$ , the $emf$ induced per turn in the other coil, in volt, will be

  • A

    $\frac {MI}{t}$

  • B

    $\frac {NMI}{t}$

  • C

    $\frac {MN}{It}$

  • D

    $\frac {MI}{Nt}$

Similar Questions

Two conducting circular loops of radii $R_1$ and $R_2$ are placed in the same plane with their centre coinciding. If $R_1 >> R_2$ the mutual inductance $M$ between them will be directly proportional to

A small circular loop of wire of radius $a$ is located at the centre of a much larger circular wire loop of radius $b$. The two loops are in the same plane. The outer loop of radius $b$ carries an alternating current $I = I_0\, cos\, (\omega t)$ . The emf induced in the smaller inner loop is nearly

  • [JEE MAIN 2017]

A small square loop of wire of side $l$ is placed inside a large square loop of wire of side $(L > l)$. The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to

  • [IIT 1998]

Two coils have a mutual inductance $0.005\,H$ . The current changes in the first coil The current changes in the first coil according to the equation $I = I_0 sin\,\omega t$ , where $I_0 = 10\,A$ and $\omega  = 100\pi \,rad/s$ . The maximum value of $emf$ in the second coil will be

Two conducting circular loops of radii ${R_1}$ and ${R_2}$ are placed in the same plane with their centres coinciding. If ${R_1} > > {R_2}$, the mutual inductance $M$ between them will be directly proportional to