Gujarati
Hindi
10-2.Transmission of Heat
normal

A composite block is made of slabs $A, B, C, D$ and $E$ of different thermal conductivities (given in terms of a constant $K$ ) and sizes (given in terms of length, $L$ ) as shown in the figure. All slabs are of same width. Heat $'Q'$ flows only from left to right through the blocks. Then in steady state $Image$

$(A)$ heat flow through $A$ and $E$ slabs are same.

$(B)$ heat flow through slab $E$ is maximum.

$(C)$ temperature difference across slab $E$ is smallest.

$(D)$ heat flow through $C =$ heat flow through $B +$ heat flow through $D$.

A

$(A,B,C)$

B

$(A,B,D)$

C

$(A,C,D)$

D

$(B,C,D)$

(IIT-2011)

Solution

$(3)$ $A$ and $E$ are in series, hence heat current is same, $(i)$ is $O . K$.

Thermal resistances

Let $b$ is width of slabs

$R_A=\frac{L}{2 K(4 L b)}=\frac{R}{8}, R_B=\frac{4 L}{3 K(L b)}=\frac{4 R}{3}$

$R_C=\frac{4 L}{4 K(2 L b)}=\frac{R}{2}, R_D=\frac{4 L}{5 K(L b)}=\frac{4 R}{5}$

$R_E=\frac{L}{6 K(4 L b)}=\frac{R}{24}$

Temperature difference $=$ Heat current $\times$ resistance

Since resistance of $E$ is samllest, hence, temperature difference across it is minimum, $(iii)$, is $O . K$.

$i_C=\frac{\Delta \theta}{R_C}=\frac{\Delta \theta}{R / 2}=\frac{2 \Delta \theta}{R}$

$i_B=\frac{\Delta \theta}{R_B}=\frac{\Delta \theta}{4 R / 3}=\frac{3 \Delta \theta}{4 R}$

$i_D=\frac{\Delta \theta}{R_D}=\frac{\Delta \theta}{4 R / 5}=\frac{5 \Delta \theta}{4 R}$

$i_C=i_B+i_D, \text { (iv) is } O . K$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.