A copper wire is held at the two ends by rigid supports. At $50^{\circ} C$ the wire is just taut, with negligible tension. If $Y=1.2 \times 10^{11} \,N / m ^2, \alpha=1.6 \times 10^{-5} /{ }^{\circ} C$ and $\rho=9.2 \times 10^3 \,kg / m ^3$, then the speed of transverse waves in this wire at $30^{\circ} C$ is .......... $m / s$
$64.6$
$16.2$
$23.2$
$32.2$
The equation of a wave on a string of linear mass density $0.04\, kgm^{-1}$ is given by : $y = 0.02\,\left( m \right)\,\sin \,\left[ {2\pi \left( {\frac{t}{{0.04\left( s \right)}} - \frac{x}{{0.50\left( m \right)}}} \right)} \right]$. The tension in the string is ..... $N$
A transverse pulse generated at the bottom of a uniform rope of length $L$, travels in upward direction. The time taken by it to travel the full length of rope will be
Explain which properties are necessary to understand the speed of mechanical waves.
A transverse wave travels on a taut steel wire with a velocity of ${v}$ when tension in it is $2.06 \times 10^{4} \;\mathrm{N} .$ When the tension is changed to $T$. the velocity changed to $\frac v2$. The value of $\mathrm{T}$ is close to
A uniform rope having some mass hanges vertically from a rigid support. A transverse wave pulse is produced at the lower end. The speed $(v)$ of the wave pulse varies with height $(h)$ from the lower end as: