A wire of variable mass per unit length $\mu = \mu _0x$ , is hanging from the ceiling as shown in figure. The length of wire is $l_0$ . A small transverse disturbance is produced at its lower end. Find the time after which the disturbance will reach to the other ends
$\sqrt {\frac{{8\,{l_0}}}{g}} $
$\sqrt {\frac{{4\,{l_0}}}{g}} $
$\sqrt {\frac{{2\,{l_0}}}{g}} $
None
One insulated conductor from a household extension cord has a mass per unit length of $μ.$ A section of this conductor is held under tension between two clamps. A subsection is located in a magnetic field of magnitude $B$ directed perpendicular to the length of the cord. When the cord carries an $AC$ current of $"i"$ at a frequency of $f,$ it vibrates in resonance in its simplest standing-wave vibration state. Determine the relationship that must be satisfied between the separation $d$ of the clamps and the tension $T$ in the cord.
A steel wire with mass per unit length $7.0 \times 10^{-3}\,kg\,m ^{-1}$ is under tension of $70\,N$. The speed of transverse waves in the wire will be $.........m/s$
The mass per unit length of a uniform wire is $0.135\, g / cm$. A transverse wave of the form $y =-0.21 \sin ( x +30 t )$ is produced in it, where $x$ is in meter and $t$ is in second. Then, the expected value of tension in the wire is $x \times 10^{-2} N$. Value of $x$ is . (Round-off to the nearest integer)
A sound is produced by plucking a string in a musical instrument, then
A perfectly elastic uniform string is suspended vertically with its upper end fixed to the ceiling and the lower end loaded with the weight. If a transverse wave is imparted to the lower end of the string, the pulse will