A wire of variable mass per unit length $\mu = \mu _0x$ , is hanging from the ceiling as shown in figure. The length of wire is $l_0$ . A small transverse disturbance is produced at its lower end. Find the time after which the disturbance will reach to the other ends
$\sqrt {\frac{{8\,{l_0}}}{g}} $
$\sqrt {\frac{{4\,{l_0}}}{g}} $
$\sqrt {\frac{{2\,{l_0}}}{g}} $
None
One end of a long string of linear mass density $8.0 \times 10^{-3}\;kg m ^{-1}$ is connected to an electrically driven tuning fork of frequency $256\; Hz$. The other end passes over a pulley and is tied to a pan containing a mass of $90 \;kg$. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At $t=0,$ the left end (fork end) of the string $x=0$ has zero transverse displacement $(y=0)$ and is moving along positive $y$ -direction. The amplitude of the wave is $5.0\; cm .$ Write down the transverse displacement $y$ as function of $x$ and $t$ that describes the wave on the string.
A string of length $1 \mathrm{~m}$ and mass $2 \times 10^{-5} \mathrm{~kg}$ is under tension $\mathrm{T}$. when the string vibrates, two successive harmonics are found to occur at frequencies $750 \mathrm{~Hz}$ and $1000 \mathrm{~Hz}$. The value of tension $\mathrm{T}$ is. . . . . . .Newton.
A steel wire with mass per unit length $7.0 \times 10^{-3}\,kg\,m ^{-1}$ is under tension of $70\,N$. The speed of transverse waves in the wire will be $.........m/s$
A steel wire has a length of $12.0 \;m$ and a mass of $2.10 \;kg .$ What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at $20\,^{\circ} C =343\; m s ^{-1}$
Explain which properties are necessary to understand the speed of mechanical waves.