A copper wire of length $1.0\, m$ and a steel wire of length $0.5\, m$ having equal cross-sectional areas are joined end to end. The composite wire is stretched by a certain load which stretches the copper wire by $1\, mm$. If the Young's modulii of copper and steel are respectively $1.0\times10^{11}\, Nm^{-2}$ and $2.0\times10^{11}\, Nm^{- 2}$, the total extension of the composite wire is ........ $mm$
$1.75$
$2$
$1.50$
$1.25$
Two wires $‘A’$ and $‘B’$ of the same material have radii in the ratio $2 : 1$ and lengths in the ratio $4 : 1$. The ratio of the normal forces required to produce the same change in the lengths of these two wires is
In steel, the Young's modulus and the strain at the breaking point are $2 \times {10^{11}}\,N{m^{ - 2}}$ and $0.15$ respectively. The stress at the breaking point for steel is therefore
What is bending ? How bending problems prevents and what is buckling ?
A $14.5\; kg$ mass, fastened to the end of a steel wire of unstretched length $1.0 \;m ,$ is whirled in a vertical circle with an angular velocity of $2\;rev/s$ at the bottom of the circle. The cross-sectional area of the wire is $0.065 \;cm ^{2} .$ Calculate the elongation of the wire when the mass is at the lowest point of its path.
The length of wire, when $M_1$ is hung from it, is $I_1$ and is $I_2$ with both $M_1$ and $M_2$ hanging. The natural length of wire is ........