A copper wire of length $1.0\, m$ and a steel wire of length $0.5\, m$ having equal cross-sectional areas are joined end to end. The composite wire is stretched by a certain load which stretches the copper wire by $1\, mm$. If the Young's modulii of copper and steel are respectively $1.0\times10^{11}\, Nm^{-2}$ and $2.0\times10^{11}\, Nm^{- 2}$, the total extension of the composite wire is ........ $mm$

  • [JEE MAIN 2013]
  • A

    $1.75$

  • B

    $2$

  • C

    $1.50$

  • D

    $1.25$

Similar Questions

A wire elongates by $l$ $mm$ when a load $W$ is hanged from it. If the wire goes over a pulley and two weights $W$ each are hung at the two ends, the elongation of the wire will be (in $mm$)

  • [AIEEE 2006]

Explain with illustration cranes regarding the applications of elastic behaviour of materials.

A wire of cross-sectional area $3\,m{m^2}$ is first stretched between two fixed points at a temperature of $20°C$. Determine the tension when the temperature falls to $10°C$. Coefficient of linear expansion $\alpha = {10^{ - 5}}   { ^\circ}{C^{ - 1}}$ and $Y = 2 \times {10^{11}}\,N/{m^2}$  ........ $N$

A wire of length $L$ and radius $r$  is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$ its length increases by $l$. Another wire of the same material of length $2L$ and radius $2r$  is pulled by a force $2f$. Then find the increase in length of this wire.

To determine Young's modulus of a wire, the formula is $Y = \frac{F}{A}.\frac{L}{{\Delta L}}$ where $F/A$ is the stress and $L/\Delta L$ is the strain. The conversion factor to change $Y$ from $CGS$ to $MKS$ system is