8.Mechanical Properties of Solids
hard

A bar is subjected to axial forces as shown. If $E$ is the modulus of elasticity of the bar and $A$ is its crosssection area. Its elongation will be

A

$\frac{Fl}{A E}$

B

$\frac{2 Fl}{A E}$

C

$\frac{3 Fl}{A E}$

D

$\frac{4 Fl}{A E}$

Solution

(d)

Elongation in $I^{st}$ part

$\Delta x_1=\frac{\text { Net force } \times L}{A Y}$

$=\frac{(3+2) F L}{A E}$

$=\frac{5 F L}{A E}$

Elongation in $II^{nd}$ part

$\Delta x_2=\frac{(F-2 F) L}{A E}=-\frac{F L}{A E}$

So net elongation

$\Delta x=\Delta x_1+\Delta x_2$

$=\frac{5 F L}{A E}-\frac{F L}{A E}=\frac{4 F L}{A E}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.