A copper wire of length $4.0m$ and area of cross-section $1.2\,c{m^2}$ is stretched with a force of $4.8 \times {10^3}$ $N.$ If Young’s modulus for copper is $1.2 \times {10^{11}}\,N/{m^2},$ the increase in the length of the wire will be
$1.33 \,mm$
$1.33 \,cm$
$2.66\, mm$
$2.66\, cm$
A wire of length $2\, m$ is made from $10\;c{m^3}$ of copper. A force $F$ is applied so that its length increases by $2\, mm.$ Another wire of length 8 m is made from the same volume of copper. If the force $F$ is applied to it, its length will increase by......... $cm$
A steel uniform rod of length $2L$ cross sectional area $A$ and mass $M$ is set rotating in a horizontal plane about an axis passing through the centre. If $Y$ is the Young’s modulus for steel, find the extension in the length of the rod.
On all the six surfaces of a unit cube, equal tensile force of $F$ is applied. The increase in length of each side will be ($Y =$ Young's modulus, $\sigma $= Poission's ratio)
To determine Young's modulus of a wire, the formula is $Y = \frac{F}{A}.\frac{L}{{\Delta L}}$ where $F/A$ is the stress and $L/\Delta L$ is the strain. The conversion factor to change $Y$ from $CGS$ to $MKS$ system is
In a human pyramid in a circus, the entire weight of the balanced group is supported by the legs of a performer who is lying on his back. The combined mass of all the persons performing the act, and the tables, plaques etc. Involved is $280\; kg$. The mass of the performer lying on his back at the bottom of the pyramid is $60\; kg$. Each thighbone (femur) of this performer has a length of $50\; cm$ and an effective radius of $2.0\; cm$. Determine the amount by which each thighbone gets compressed under the extra load.