A cricket ball is thrown at a speed of $28\; m /s$ in a direction $30^o$ above the horizontal. Calculate
$(a)$ the maximum height,
$(b)$ the time taken by the ball to return to the same level, and
$(c)$ the distance from the thrower to the point where the ball returns to the same level
$(a)$ The maximum height is given by
$h_{m} =\frac{\left(v_{o} \sin \theta_{ o }\right)^{2}}{2 g}$$=\frac{\left(28 \sin 30^{\circ}\right)^{2}}{2(9.8)} m$$=\frac{14 \times 14}{2 \times 9.8}=10.0 m$
$(b)$ The time taken to return to the same level is
$T_{f}=\left(2 v_{ o } \sin \theta_{ o }\right) / g$$=\left(2 \times 28 \times \sin 30^{\circ}\right) / 9.8$
$=28 / 9.8 s =2.9 s$
$(c)$ The distance from the thrower to the point where the ball returns to the same level is
$R=\frac{\left(v_{ o }^{2} \sin 2 \theta_{ o }\right)}{g}$$=\frac{28 \times 28 \times \sin 60^{\circ}}{9.8}=69 m$
A ball is projected from a point $O$ as shown in figure. It will strike the ground after ........ $s$ $\left(g=10 \,m / s ^2\right)$
A piece of marble is projected from earth's surface with velocity of $19.6 \sqrt{2}\,m / s$ at $45^{\circ}.$ $2\,s$ later its velocity makes an angle $\alpha$ with horizontal, where $\alpha$ is $..........$
A projectile crosses two walls of equal height $H$ symmetrically as shown The velocity of projection is........ $ms^{-1}$
Derive the formula for time taken to achieve maximum, total time of Flight and maximum height attained by a projectile.
A ball is hit by a batsman at an angle of $37^o$ as shown in figure. The man standing at $P$ should run at what minimum velocity so that he catches the ball before it strikes the ground. Assume that height of man is negligible in comparison to maximum height of projectile. ........ $ms^{-1}$