A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with a net acceleration of $g/3$. The fraction of volume immersed in the liquid will be :-
$\frac{1}{2}$
$\frac{3}{8}$
$\frac{2}{3}$
$\frac{3}{4}$
A candle of diameter $d$ is floating on a liquid in a cylindrical container of diameter $D (D >> d)$ as shown in figure. If it is burning at the rate of $2\, cm/hour$ then the top of the candle will
If the terminal speed of a sphere of gold (density $19.5 \,kg / m ^2$ ) is $0.2 \,m / s$ in a viscous liquid (density $=1.5 \,kg / m ^3$ ), find the terminal speed of a sphere of silver (density $=10.5 \,kg / m ^3$ ) of the same size in the same liquid is ............ $m / s$
A liquid is kept in a cylindrical vessel which is being rotated about a vertical axis through the centre of the circular base. If the radius of the vessel is $r$ and angular velocity of rotation is $\omega $ , then the difference in the heights of the liquid at the centre of the vessel and the edge is
The graph between terminal velocity (along $y-$ axis) and square of radius (along $x-$ axis) of spherical body of density $\rho $ allowed to fall through a fluid of density $\sigma $ is a
Air is streaming past a horizontal aeroplane wing such that its speed is $120\, m/s$ over the upper surface and $90\, m/s$ at the lower surface. If the density of air is $1.3\, kg/m^3$ and the wing is $10\, m$ long and has an average width of $2\, m$ , then the difference of the pressure on the two sides of the wing is ........ $N/m^2$