A cylinder of radius $R$ and length $L$ is placed in a uniform electric field $E$ parallel to the cylinder axis. The total flux for the surface of the cylinder is given by
$2\pi {R^2}E$
$\pi {R^2}/E$
$(\pi {R^2} - \pi R)/E$
Zero
A cube of a metal is given a positive charge $Q$. For the above system, which of the following statements is true
The $S.I.$ unit of electric flux is
The electric field components in Figure are $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0,$ in which $\alpha=800 \;N / C\, m ^{1 / 2} .$ Calculate
$(a)$ the flux through the cube, and
$(b)$ the charge within the cube. Assume that $a=0.1 \;m$
Three charges $q_1 = 1\,\mu c, q_2 = 2\,\mu c$ and $q_3 = -3\,\mu c$ and four surfaces $S_1, S_2 ,S_3$ and $S_4$ are shown in figure. The flux emerging through surface $S_2$ in $N-m^2/C$ is
A point charge causes an electric flux of $-1.0 \times 10^{3}\; N\;m ^{2} / C$ to pass through a spherical Gaussian surface of $10.0\; cm$ radius centred on the charge.
$(a)$ If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
$(b)$ What is the value of the point charge?