Electric charge is uniformly distributed along a long straight wire of radius $1\, mm$. The charge per $cm$ length of the wire is $Q$ $coulomb$. Another cylindrical surface of radius $50$ $cm$ and length $1\,m$ symmetrically encloses the wire as shown in the figure. The total electric flux passing through the cylindrical surface is

112-12

  • A

    $\frac{Q}{{{\varepsilon _0}}}$

  • B

    $\frac{{100Q}}{{{\varepsilon _0}}}$

  • C

    $\frac{{10Q}}{{(\pi {\varepsilon _0})}}$

  • D

    $\frac{{100Q}}{{(\pi {\varepsilon _0})}}$

Similar Questions

$q_1, q_2, q_3$ and $q_4$ are point charges located at point as shown in the figure and  $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true  according to the Gauss's law 

As shown in figure, a cuboid lies in a region with electric field $E=2 x^2 \hat{i}-4 y \hat{j}+6 \hat{k} \quad N / C$. The magnitude of charge within the cuboid is $n \varepsilon_0 C$. The value of $n$ is $............$ (if dimension of cuboid is $1 \times 2 \times 3 \;m ^3$ )

  • [JEE MAIN 2023]

The total charge enclosed in an incremental volume of $2 \times 10^{-9} \,{m}^{3}$ located at the origin is ...... $nC,$ if electric flux density of its field is found as $D=e^{-x} \sin y \hat{i}-e^{-x} \cos y \hat{j}+2 z \hat{k}\, C / m^{2}$

  • [JEE MAIN 2021]

Draw electric field by negative charge.

The electric flux for Gaussian surface A that enclose the charged particles in free space is (given $q_1$ = $-14\, nC$, $q_2$ = $78.85\, nC$, $q_3$ = $-56 \,nC$)