Gujarati
2. Electric Potential and Capacitance
normal

A disk of radius $R$ with uniform positive charge density $\sigma$ is placed on the $x y$ plane with its center at the origin. The Coulomb potential along the $z$-axis is

$V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right)$

A particle of positive charge $q$ is placed initially at rest at a point on the $z$ axis with $z=z_0$ and $z_0>0$. In addition to the Coulomb force, the particle experiences a vertical force $\vec{F}=-c \hat{k}$ with $c>0$. Let $\beta=\frac{2 c \epsilon_0}{q \sigma}$. Which of the following statement($s$) is(are) correct?

$(A)$ For $\beta=\frac{1}{4}$ and $z_0=\frac{25}{7} R$, the particle reaches the origin.

$(B)$ For $\beta=\frac{1}{4}$ and $z_0=\frac{3}{7} R$, the particle reaches the origin.

$(C)$ For $\beta=\frac{1}{4}$ and $z_0=\frac{R}{\sqrt{3}}$, the particle returns back to $z=z_0$.

$(D)$ For $\beta>1$ and $z_0>0$, the particle always reaches the origin.

A

$A,B,C$

B

$A,B$

C

$A,C$

D

$A,C,D$

(IIT-2022)

Solution

$W _{ el }+ W _{ est }= k _{ t }- k _{ i }$

$qv _{ i }- qv _{ t }+ W _{ est }= k _{ t }- k _{ i }$

$\frac{ q \sigma }{2 \epsilon_0}\left[\sqrt{ R ^2+ Z ^2}- Z \right]-\frac{ q \sigma R }{2 \epsilon_0}+ CZ = k _{ t }-0$

$C =\frac{ q \sigma B }{2 \epsilon_0}$

Substitute $\beta$ & $Z$, calculate kinetic energy at $z=0$

If kinetic energy is positive, then particle will reach at origin

If kinetic energy is negative, then particle will not reach at origin.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.