Gujarati
2. Electric Potential and Capacitance
normal

एक त्रिज्या $R$ तथा एकसमान धनात्मक आवेश घनत्व (positive charge density) $\sigma$ की चक्रिका को $x y$ तल पर रखा गया है और इसका केंद्र मूल बिंदु पर है। कूलाम्ब विभव $z$ अक्ष पर $V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right)$ है। एक कण जिसका धनात्मक आवेश $q$ है को प्रारंभ में विरामावस्था में $z$ अक्ष पर $z=z_0$ तथा $z_0>0$ स्थिति पर रखा जाता है। इसके अतिरिक्त एक कण पर उध्वार्धर (vertical) बल $\vec{F}=-c \hat{k}$ लगता है, जहाँ $c>0$ है। $\beta=\frac{2 c \epsilon_0}{q \sigma}$ लें। निम्न में से कौन सा (से) कथन सही है (हैं)।

$(A)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{25}{7} R$ के लिए कण मूल बिंदु (origin) पर पहुँचता है।

$(B)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{3}{7} R$ के लिये कण मूल बिंदु पर पहुँचता है।

$(C)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{R}{\sqrt{3}}$ के लिए कण $z=z_0$ पर वापस आता है।

$(D)$ $\beta>1$ तथा $z_0>0$ के लिये कण हमेशा मूल बिंदु पर पहुँचता है।

A

$A,B,C$

B

$A,B$

C

$A,C$

D

$A,C,D$

(IIT-2022)

Solution

$W _{ el }+ W _{ est }= k _{ t }- k _{ i }$

$qv _{ i }- qv _{ t }+ W _{ est }= k _{ t }- k _{ i }$

$\frac{ q \sigma }{2 \epsilon_0}\left[\sqrt{ R ^2+ Z ^2}- Z \right]-\frac{ q \sigma R }{2 \epsilon_0}+ CZ = k _{ t }-0$

$C =\frac{ q \sigma B }{2 \epsilon_0}$

Substitute $\beta$ & $Z$, calculate kinetic energy at $z=0$

If kinetic energy is positive, then particle will reach at origin

If kinetic energy is negative, then particle will not reach at origin.

Standard 12
Physics

Similar Questions

इस प्रश्न में प्रकथन $1$ एवं प्रकथन $2$ दिये हुए हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिए जोकि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।

त्रिज्या $R$ के एक विध्युत रोधी ठोस गोले पर एकसमान धनात्मक आवेश घनत्व $\rho$ हैं। इस एकसमान आवेश वितरण कें कारण विध्युत विभव का मान गोले के केन्द्र पर, गोले के पृष्ठ पर और गोले से बाहर एक बिन्दु पर परिमित है। अनन्त पर विध्युत विभव का मान शून्य है

प्रकथन $1 :$ जव एक आवेश $q$ को गोले के केन्द्र से पृष्ठ तक ले जाया जाता है, तब स्थितिज ऊर्जा में $\frac{q \rho}{38_{0}}$ से परिवर्तन होता है।

प्रकथन $2 :$ गोले के केन्द्र से दूरी $r( r < R)$ पर विध्युत क्षेत्र $\frac{\rho r}{3 \varepsilon_{0}}$ है।

hard
(AIEEE-2012)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.