- Home
- Standard 12
- Physics
एक त्रिज्या $R$ तथा एकसमान धनात्मक आवेश घनत्व (positive charge density) $\sigma$ की चक्रिका को $x y$ तल पर रखा गया है और इसका केंद्र मूल बिंदु पर है। कूलाम्ब विभव $z$ अक्ष पर $V(z)=\frac{\sigma}{2 \epsilon_0}\left(\sqrt{R^2+z^2}-z\right)$ है। एक कण जिसका धनात्मक आवेश $q$ है को प्रारंभ में विरामावस्था में $z$ अक्ष पर $z=z_0$ तथा $z_0>0$ स्थिति पर रखा जाता है। इसके अतिरिक्त एक कण पर उध्वार्धर (vertical) बल $\vec{F}=-c \hat{k}$ लगता है, जहाँ $c>0$ है। $\beta=\frac{2 c \epsilon_0}{q \sigma}$ लें। निम्न में से कौन सा (से) कथन सही है (हैं)।
$(A)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{25}{7} R$ के लिए कण मूल बिंदु (origin) पर पहुँचता है।
$(B)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{3}{7} R$ के लिये कण मूल बिंदु पर पहुँचता है।
$(C)$ $\beta=\frac{1}{4}$ तथा $z_0=\frac{R}{\sqrt{3}}$ के लिए कण $z=z_0$ पर वापस आता है।
$(D)$ $\beta>1$ तथा $z_0>0$ के लिये कण हमेशा मूल बिंदु पर पहुँचता है।
$A,B,C$
$A,B$
$A,C$
$A,C,D$
Solution
$W _{ el }+ W _{ est }= k _{ t }- k _{ i }$
$qv _{ i }- qv _{ t }+ W _{ est }= k _{ t }- k _{ i }$
$\frac{ q \sigma }{2 \epsilon_0}\left[\sqrt{ R ^2+ Z ^2}- Z \right]-\frac{ q \sigma R }{2 \epsilon_0}+ CZ = k _{ t }-0$
$C =\frac{ q \sigma B }{2 \epsilon_0}$
Substitute $\beta$ & $Z$, calculate kinetic energy at $z=0$
If kinetic energy is positive, then particle will reach at origin
If kinetic energy is negative, then particle will not reach at origin.