किसी सपाट वृत्तीय चकती पर आवेश $ + Q$ एकसमान वितरित है। आवेश$ + q$ को $E$ गतिज ऊर्जा से चकती की ओर, इसके लम्बवत् अक्ष के अनुदिश फेंका जाता है। आवेश $q$
चकती के केन्द्र से टकराएगा
चकती को छूकर अपने मार्ग पर वापिस आ जाएगा
चकती को बिना छुए अपने मार्ग पर वापिस आ जाएगा
उपरोक्त तीनों अवस्थाओं में से कोई भी सम्भव है, $E$ के मान के अनुसार
हाइड्रोजन परमाणु में प्रोटॉन व इलेक्ट्रॉन के बीच की दूरी ${10^{ - 10}}$ मीटर है। इन दोनों पर आवेश का परिमाण $1.6 \times {10^{ - 19}}\,C$ है। प्रोटॉन के कारण इलेक्ट्रॉन पर उत्पé विद्युत क्षेत्र की तीव्रता का मान होगा
एक पेण्डुलम के गोलक का द्रव्यमान $30.7 \times {10^{ - 6}}\,kg$ है। एवं इस पर आवेश $2 \times {10^{ - 8}}\,C$ है। यह पेण्डुलम $20000\, V/m$ के एकसमान विद्युत क्षेत्र में संतुलन में है। पेण्डुलम के धागे में तनाव होगा $(g = 9.8\,m/{s^2})$
दो बिन्दु आवेश $A$ तथा $B$ जिनके परिमाण क्रमश: $+8 \times 10^{-6} C$ तथा $-8 \times 10^{-6} C$ हैं, '$d$' दूरी पर रखे हुयें हैं। यदि आवेशों के मध्य बिन्दु $O$ पर विद्युत क्षेत्र $6.4 \times 10^4 NC ^{-1}$ है, तो बिन्दु आवेशों $A$ तथा $B$ के मध्य दूरी ' $d$ ' $............m$ होगी
एक धनावेशित गेंद को सिल्क के धागे से लटकाया गया है। यदि हम एक बिन्दु पर धनात्मक परीक्षण आवेश ${q_0}$ रखते हैं एवं $F/{q_0}$ को मापते हैं तो यह कहा जा सकता है कि विद्युत क्षेत्र प्राबल्य $E$
दो बिन्दु आवेश $20\,\mu \,C$ एवं $80\,\mu \,C$ एक-दूसरे से $10\,cm$ की दूरी पर रखे हैं। इन दोनों को जोड़ने वाली रेखा पर $20\,\mu \,C$ से कितनी दूरी पर विद्युत क्षेत्र की तीव्रता शून्य.......$m$ होगी