किसी सपाट वृत्तीय चकती पर आवेश $ + Q$ एकसमान वितरित है। आवेश$ + q$ को $E$ गतिज ऊर्जा से चकती की ओर, इसके लम्बवत् अक्ष के अनुदिश फेंका जाता है। आवेश $q$
चकती के केन्द्र से टकराएगा
चकती को छूकर अपने मार्ग पर वापिस आ जाएगा
चकती को बिना छुए अपने मार्ग पर वापिस आ जाएगा
उपरोक्त तीनों अवस्थाओं में से कोई भी सम्भव है, $E$ के मान के अनुसार
समकोण त्रिभुज $OAB$ के बिन्दु $A$ तथा $B$ पर आवेश $Q _{1}$ तथा $Q _{2}$ रखे हैं (चित्र देखिये)। यदि बिन्दु $O$ पर वैधुत क्षेत्र कर्ण के लम्बवत् है तो आवेशों का अनुपात $Q_{1} / Q_{2}$ किसके समानुपाती होगा ?
एक धनावेशित पतली धातु की वलय जिसकी त्रिज्या $R$, $xy$-तल में स्थित है तथा इसका केन्द्र मूल बिन्दु $O$ पर है। एक ऋणावेशित कण $P$ विराम अवस्था से बिन्दु $(0,\,0,\,{z_0})$ से छोड़ा जाता है, यहाँ ${z_0} > 0$ तो $P$ की गति होगी
$ABC$ एक समबाहु त्रिभुज है। प्रत्येक शीर्ष पर $ + \,q$ आवेश रखा गया है। बिन्दु $O$ पर वैद्युत क्षेत्र की तीव्रता होगी
तीन एकसमान बिन्दु आवेश चित्रानुसार एक समकोण समद्विबाहु त्रिभुज के शीर्षों पर रखे गये हैं। विकर्ण के मध्य बिन्दु पर कौनसा सदिश विद्युत क्षेत्र की दिशा से संपाती होगा
मूल बिन्दु पर $10 \mu \mathrm{C}$ का एक बिन्दु आवेश रखा है। $\mathrm{x}$ अक्ष के कौनसे स्थान पर $40 \mu \mathrm{C}$ का बिन्दु आवेश रखने पर $\mathrm{x}=2 \mathrm{~cm}$ पर कुल वैद्युत क्षेत्र शून्य होगा-