Gujarati
Hindi
9-1.Fluid Mechanics
normal

A fluid container is containing a liquid of density $\rho $ is accelerating upward with acceleration a along the inclined place of inclination $\alpha$  as shown. Then the angle of inclination $ \theta $ of free surface is :

A

${\tan ^{ - 1}}\left[ {\frac{a}{{g\cos \alpha }}} \right]$

B

${\tan ^{ - 1}}\left[ {\frac{{a + g\sin \alpha }}{{g\cos \alpha }}} \right]$

C

${\tan ^{ - 1}}\left[ {\frac{{a - g\sin \alpha }}{{g(1 + \cos \alpha )}}} \right]$

D

${\tan ^{ - 1}}\left[ {\frac{{a - g\sin \alpha }}{{g(1 - \cos \alpha )}}} \right]$

Solution

Apply pseudo force on a particle of mass $m .$ Net force along the surface is zero.

$m a \cos \theta=m g \cos [90-(\theta-\alpha)]$

$\frac{a}{g} \cos \theta=g \sin (\theta-\alpha)$

$\frac{a}{g}=\frac{\sin \theta \cos \alpha}{\cos \theta}-\frac{\cos \theta \sin \alpha}{\cos \theta}$

$\tan \theta=\frac{\frac{a}{g}+\sin \alpha}{\cos \alpha}=\frac{a+g \sin \alpha}{g \cos \alpha}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.