The weight of an empty balloon on a spring balance is $w_1$. The weight becomes $w_2$ when the balloon is filled with air. Let the weight of the air itself be $w$ .Neglect the thickness of the balloon when it is filled with air. Also neglect the difference in the densities of air inside $\&$ outside the balloon. Then :

  • A

    $w_2 = w_1$

  • B

    $w_2 = w_1 + w$

  • C

    $w_2 < w_1 + w$

  • D

    $A$ and $C$ both

Similar Questions

A wooden block floating in a bucket of water has $\frac{4}{5}$ of its volume submerged. When certain amount of an oil is poured into the bucket, it is found that the block is just under the oil surface with half of its volume under water and half in oil. The density of oil relative to that of water is

  • [JEE MAIN 2019]

A block of steel of size $ 5 cm × 5 cm × 5 cm $ is weighed in water. If the relative density of steel is $7,$  its apparent weight is

A body remain in equilibrium at which depth of liquid ? Explain ?

A uniform solid cylinder of density $0.8$ $g/cm^3$ floats in equilibrium in a combination of two non-mixing liquid $A$ and $B$ with its axis vertical. The densities of liquid $A$ and $B$ are $0.7$ $g/cm^3$ and $1.2$ $gm/cm^3$. The height of liquid $A$ is $h_A = 1.2$ $cm$ and the length of the part of cylinder immersed in liquid $B$ is $h_B = 0.8$ $cm$. Then the length part of the cylinder in air is ....... $cm$

The spring balance $A$ reads $2$ $kg$ with a block $m $ suspended from it. $A$ balance $B$ reads $5$ $kg$ when a beaker with liquid is put on the pan of the balance. The two balances are now so arranged that the hanging mass is inside the liquid in the beaker as shown in the figure in this situation: