A force of $\left( {2\hat i + 3\hat j + 4\hat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\hat i + 4\hat j + 5\hat k} \right)\,m.$ The power used is ............. $\mathrm{W}$
$4.5$
$6.5$
$7.5$
$9.5$
$A$ ball is dropped from $a$ height $h$. As it bounces off the floor, its speed is $80$ percent of what it was just before it hit the floor. The ball will then rise to $a$ height of most nearly .............. $\mathrm{h}$
A body of mass $2\,kg$ makes an elastic collision with another body at rest and continues to move in the original direction with one fourth of its original speed, The mass of the second body which collides with the first body is ............... $\mathrm{kg}$
The length of a spring is $\alpha $ when a force of $4\,N$ is applied on it and the length is $\beta $ when $5\,N$ force is applied. Then the length of spring when $9\,N$ force is applied is
Pulley and spring are massless and the friction is absent everwhere. $5\,kg$ block is released from rest. The speed of $5\,kg$ block when $2\,kg$ block leaves the contact with ground is (take force constant of the spring $K = 40\,N/m$ and $g = 10\,m/s^2$ )
$A$ man who is running has half the kinetic energy of the boy of half his mass. The man speeds up by $1 \, m/s$ and then has the same kinetic energy as the boy. The original speed of the man was