The variation of force $F$ acting on a body moving along $x$-axis varies with its position $(x)$ as shown in figure The body is in stable equilibrium state at

213139-q

  • A

    $P$

  • B

    $Q$

  • C

    $R$

  • D

    Both $P$ and $Q$

Similar Questions

$A$ man who is running has half the kinetic energy of the boy of half his mass. The man speeds up by $1 \, m/s$ and then has the same kinetic energy as the boy. The original speed of the man was

$ABCDE$ is a channel in the vertical plane, part $BCDE$ being circular with radius $r$ . A block is released from $A$ and slides without friction and without rolling. The block will complete the loop if $h$ is

A 3.628 kg freight car moving along a horizontal rail road spur track at $7.2\; km/hour$ strikes a bumper whose coil springs experiences a maximum compression of $30 \;cm$ in stopping the car. The elastic potential energy of the springs at the instant when they are compressed $15\; cm$ is [2013]

(a) $12.1 \times 10^4\;J$ (b) $121  \times 10^4\;J$ (c) $1.21 \times 10^4\;J$ (d) $1.21  \times 10^4\;J$

A $300\ kg$ crate is dropped vertically onto a conveyor belt that is moving at $1.20\ m/s$ . A motor maintains the belt's constant speed. The belt initially slides under the crate, with a coefficient of friction of $0.400$ . After a short time, the crate is moving at the speed of the belt. During the period in which the crate is being accelerated, find the work done by the motor which drives the belt ................... $\mathrm{J}$

A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{{m{v^2}}}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle