The variation of force $F$ acting on a body moving along $x$-axis varies with its position $(x)$ as shown in figure The body is in stable equilibrium state at
$P$
$Q$
$R$
Both $P$ and $Q$
A uniform chain of length $L$ and mass $M$ is lying on a smooth table and one third of its length is hanging vertically down over the edge of the table. If $g$ is acceleration due to gravity, work required to pull the hanging part on to the table is
If the potential energy of a gas molecule is $U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}},M$ and $N$ being positive constants, then the potential energy at equilibrium must be
If the kinetic energy of a body is directly proportional to time $t$, the magnitude of force acting on the body is
$(i)$ directly proportional to $\sqrt t$
$(ii)$ inversely proportional to $\sqrt t$
$(iii)$ directly proportional to the speed of the body
$(iv)$ inversely proportional to the speed of body
A particle moves along $x$-axis from $x=0$ to $x=5$ metre under the influence of a force $F=7-2 x+3 x^2$. The work done in the process is .............
A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $a_c$ is varying with time $t$ as, $a_c = k^2rt^2$, The power delivered to the particle by the forces acting on it is