- Home
- Standard 13
- Quantitative Aptitude
7.Profit and Loss
easy
A fruit-seller buys $x$ guavas for $Rs.\, y$ and sells $y$ guavas for $Rs.\, x .$ If $x>y,$ then he made
A
$\frac{x^{2}-y^{2}}{x y} \% \operatorname{loss}$
B
$\frac{x^{2}-y^{2}}{x y} \%$ gain
C
$\frac{x^{2}-y^{2}}{y^{2}} \% \operatorname{loss}$
D
$\frac{x^{2}-y^{2}}{y^{2}} \times 100 \%$ gain
Solution
Let, the seller buy $x y$ guavas.
$\therefore$ $C.P.$ of $x y$ guavas $=x y \times \frac{y}{x}=y^{2}$
S.P. of $x y$ guavas $=x y \times \frac{x}{y}=x^{2}$
$\therefore$ Gain $=x^{2}-y^{2}(\because x>y)$
$\operatorname{Gain} \%=\frac{x^{2}-y^{2}}{y^{2}} \times 100$
Standard 13
Quantitative Aptitude
Similar Questions
medium